Known Exploited Vulnerabilities CVE-2022-21999 Mappings

Windows Print Spooler Elevation of Privilege Vulnerability

Mappings

Capability ID Capability Description Mapping Type ATT&CK ID ATT&CK Name Notes
CVE-2022-21999 Microsoft Windows Print Spooler Privilege Escalation Vulnerability secondary_impact T1136.001 Local Account
Comments
This vulnerability is exploited by an adversary who already has access to the victim system. This vulnerability, also known as SpoolFool, is a local privilege escalation vulnerability in the Windows Print Spooler service, which manages print operations on Windows systems. This vulnerability allows attackers to execute code with SYSTEM-level privileges by exploiting the `SpoolDirectory` configuration setting. The `SpoolDirectory` is writable by all users and can be manipulated using the `SetPrinterDataEx()` function, provided the attacker has `PRINTER_ACCESS_ADMINISTER` permissions. The exploit involves creating a directory junction and using a Universal Naming Convention (UNC) path to write a malicious DLL to a privileged directory, such as `C:\Windows\System32\spool\drivers\x64\4`. This DLL is then loaded and executed by the Print Spooler service, granting the attacker elevated privileges. This method circumvents previous security checks designed to prevent privilege escalation through the Print Spooler. The vulnerability has been exploited in the wild, with attackers using tools like the SpoolFool proof of concept (PoC) published on GitHub. One observed attack involved creating a local administrator account with a default password, indicating the potential for significant system compromise. The Gelsemium APT group has been linked to activity exploiting this vulnerability, highlighting its use in advanced persistent threat campaigns.
References
CVE-2022-21999 Microsoft Windows Print Spooler Privilege Escalation Vulnerability secondary_impact T1211 Exploitation for Defense Evasion
Comments
This vulnerability is exploited by an adversary who already has access to the victim system. This vulnerability, also known as SpoolFool, is a local privilege escalation vulnerability in the Windows Print Spooler service, which manages print operations on Windows systems. This vulnerability allows attackers to execute code with SYSTEM-level privileges by exploiting the `SpoolDirectory` configuration setting. The `SpoolDirectory` is writable by all users and can be manipulated using the `SetPrinterDataEx()` function, provided the attacker has `PRINTER_ACCESS_ADMINISTER` permissions. The exploit involves creating a directory junction and using a Universal Naming Convention (UNC) path to write a malicious DLL to a privileged directory, such as `C:\Windows\System32\spool\drivers\x64\4`. This DLL is then loaded and executed by the Print Spooler service, granting the attacker elevated privileges. This method circumvents previous security checks designed to prevent privilege escalation through the Print Spooler. The vulnerability has been exploited in the wild, with attackers using tools like the SpoolFool proof of concept (PoC) published on GitHub. One observed attack involved creating a local administrator account with a default password, indicating the potential for significant system compromise. The Gelsemium APT group has been linked to activity exploiting this vulnerability, highlighting its use in advanced persistent threat campaigns.
References
CVE-2022-21999 Microsoft Windows Print Spooler Privilege Escalation Vulnerability secondary_impact T1059 Command and Scripting Interpreter
Comments
This vulnerability is exploited by an adversary who already has access to the victim system. This vulnerability, also known as SpoolFool, is a local privilege escalation vulnerability in the Windows Print Spooler service, which manages print operations on Windows systems. This vulnerability allows attackers to execute code with SYSTEM-level privileges by exploiting the `SpoolDirectory` configuration setting. The `SpoolDirectory` is writable by all users and can be manipulated using the `SetPrinterDataEx()` function, provided the attacker has `PRINTER_ACCESS_ADMINISTER` permissions. The exploit involves creating a directory junction and using a Universal Naming Convention (UNC) path to write a malicious DLL to a privileged directory, such as `C:\Windows\System32\spool\drivers\x64\4`. This DLL is then loaded and executed by the Print Spooler service, granting the attacker elevated privileges. This method circumvents previous security checks designed to prevent privilege escalation through the Print Spooler. The vulnerability has been exploited in the wild, with attackers using tools like the SpoolFool proof of concept (PoC) published on GitHub. One observed attack involved creating a local administrator account with a default password, indicating the potential for significant system compromise. The Gelsemium APT group has been linked to activity exploiting this vulnerability, highlighting its use in advanced persistent threat campaigns.
References
CVE-2022-21999 Microsoft Windows Print Spooler Privilege Escalation Vulnerability primary_impact T1068 Exploitation for Privilege Escalation
Comments
This vulnerability is exploited by an adversary who already has access to the victim system. This vulnerability, also known as SpoolFool, is a local privilege escalation vulnerability in the Windows Print Spooler service, which manages print operations on Windows systems. This vulnerability allows attackers to execute code with SYSTEM-level privileges by exploiting the `SpoolDirectory` configuration setting. The `SpoolDirectory` is writable by all users and can be manipulated using the `SetPrinterDataEx()` function, provided the attacker has `PRINTER_ACCESS_ADMINISTER` permissions. The exploit involves creating a directory junction and using a Universal Naming Convention (UNC) path to write a malicious DLL to a privileged directory, such as `C:\Windows\System32\spool\drivers\x64\4`. This DLL is then loaded and executed by the Print Spooler service, granting the attacker elevated privileges. This method circumvents previous security checks designed to prevent privilege escalation through the Print Spooler. The vulnerability has been exploited in the wild, with attackers using tools like the SpoolFool proof of concept (PoC) published on GitHub. One observed attack involved creating a local administrator account with a default password, indicating the potential for significant system compromise. The Gelsemium APT group has been linked to activity exploiting this vulnerability, highlighting its use in advanced persistent threat campaigns.
References
CVE-2022-21999 Microsoft Windows Print Spooler Privilege Escalation Vulnerability exploitation_technique T1078 Valid Accounts
Comments
This vulnerability is exploited by an adversary who already has access to the victim system. This vulnerability, also known as SpoolFool, is a local privilege escalation vulnerability in the Windows Print Spooler service, which manages print operations on Windows systems. This vulnerability allows attackers to execute code with SYSTEM-level privileges by exploiting the `SpoolDirectory` configuration setting. The `SpoolDirectory` is writable by all users and can be manipulated using the `SetPrinterDataEx()` function, provided the attacker has `PRINTER_ACCESS_ADMINISTER` permissions. The exploit involves creating a directory junction and using a Universal Naming Convention (UNC) path to write a malicious DLL to a privileged directory, such as `C:\Windows\System32\spool\drivers\x64\4`. This DLL is then loaded and executed by the Print Spooler service, granting the attacker elevated privileges. This method circumvents previous security checks designed to prevent privilege escalation through the Print Spooler. The vulnerability has been exploited in the wild, with attackers using tools like the SpoolFool proof of concept (PoC) published on GitHub. One observed attack involved creating a local administrator account with a default password, indicating the potential for significant system compromise. The Gelsemium APT group has been linked to activity exploiting this vulnerability, highlighting its use in advanced persistent threat campaigns.
References