Windows Secure Boot leverages Intel PTT (TPM) to safeguard settings stored in UEFI, while Intel Boot Guard prevents unauthorized modifications to UEFI firmware. It verifies the signatures of the UEFI firmware, bootloader, and boot drivers before loading the operating system.
Capability ID | Capability Description | Enables | Category | Value | ATT&CK ID | ATT&CK Name | Notes |
---|---|---|---|---|---|---|---|
intel-txt | Intel Trusted Execution Technology | Win 11, System Guard | protect | significant | T1195 | Supply Chain Compromise |
Comments
System Guard Secure Launch uses a technology called Dynamic Root of Trust Measurement (DRTM). It leverages Intel PTT (TPM) and TXT to provide secure methods to boot a system and verify the integrity of the operating system and loading mechanisms. System Guard Secure Launch ensures that the system can freely boot into untrusted code initially, but shortly after launches the system into a trusted state by taking control of all CPUs and forcing them down a well-known and measured code path. This has the benefit of allowing untrusted early code to boot the system but then being able to securely transition into a trusted and measured state. The ability to transition in real-time to a secure state justified the score of significant for this feature and its corresponding protection (E.g., bootkit, rootkit, firmware corruption, etc.).
References
|
intel-txt | Intel Trusted Execution Technology | Win 11, System Guard | protect | significant | T1195.003 | Compromise Hardware Supply Chain |
Comments
System Guard Secure Launch uses a technology called Dynamic Root of Trust Measurement (DRTM). It leverages Intel PTT (TPM) and TXT to provide secure methods to boot a system and verify the integrity of the operating system and loading mechanisms. System Guard Secure Launch ensures that the system can freely boot into untrusted code initially, but shortly after launches the system into a trusted state by taking control of all CPUs and forcing them down a well-known and measured code path. This has the benefit of allowing untrusted early code to boot the system but then being able to securely transition into a trusted and measured state. The ability to transition in real-time to a secure state justified the score of significant for this feature and its corresponding protection (E.g., bootkit, rootkit, firmware corruption, etc.).
References
|
intel-txt | Intel Trusted Execution Technology | Win 11, System Guard | protect | significant | T1195.002 | Compromise Software Supply Chain |
Comments
System Guard Secure Launch uses a technology called Dynamic Root of Trust Measurement (DRTM). It leverages Intel PTT (TPM) and TXT to provide secure methods to boot a system and verify the integrity of the operating system and loading mechanisms. System Guard Secure Launch ensures that the system can freely boot into untrusted code initially, but shortly after launches the system into a trusted state by taking control of all CPUs and forcing them down a well-known and measured code path. This has the benefit of allowing untrusted early code to boot the system but then being able to securely transition into a trusted and measured state. The ability to transition in real-time to a secure state justified the score of significant for this feature and its corresponding protection (E.g., bootkit, rootkit, firmware corruption, etc.).
References
|
intel-txt | Intel Trusted Execution Technology | Win 11, System Guard | protect | significant | T1014 | Rootkit |
Comments
System Guard Secure Launch uses a technology called Dynamic Root of Trust Measurement (DRTM). It leverages Intel PTT (TPM) and TXT to provide secure methods to boot a system and verify the integrity of the operating system and loading mechanisms. System Guard Secure Launch ensures that the system can freely boot into untrusted code initially, but shortly after launches the system into a trusted state by taking control of all CPUs and forcing them down a well-known and measured code path. This has the benefit of allowing untrusted early code to boot the system but then being able to securely transition into a trusted and measured state. The ability to transition in real-time to a secure state justified the score of significant for this feature and its corresponding protection (E.g., bootkit, rootkit, firmware corruption, etc.).
References
|