Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)
Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank System Calls)(Citation: MDSec System Calls)
Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger\EventLog-Microsoft-Windows-Sysmon-Operational</code> may be modified to tamper with and potentially disable Sysmon logging.(Citation: disable_win_evt_logging)
On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in Espionage Operation)(Citation: Analysis of FG-IR-22-369)
In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor.
Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools.(Citation: chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation: demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems.(Citation: demystifying_ryuk)
Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.(Citation: avoslocker_ransomware)
View in MITRE ATT&CK®Capability ID | Capability Description | Mapping Type | ATT&CK ID | ATT&CK Name | Notes |
---|---|---|---|---|---|
CVE-2020-5902 | F5 BIG-IP Traffic Management User Interface (TMUI) Remote Code Execution Vulnerability | secondary_impact | T1562.001 | Disable or Modify Tools |
Comments
CVE-2020-5902 is a RCE vulnerability in the Traffic Management User Interface (TMUI) that allows for unauthenticated attackers, or authenticated users, with network access to the Configuration Utility (through the BIG-IP management port and/or self IPs) to execute arbitrary system commands, create or delete files, disable services, and execute arbitrary Java code.The Traffic Management User Interface (TMUI)
References
|
CVE-2023-22952 | Multiple SugarCRM Products Remote Code Execution Vulnerability | secondary_impact | T1562.001 | Disable or Modify Tools |
Comments
This Remote Code Execution (RCE) vulnerability is exploited by an unauthenticated attacker via a crafted request can inject custom PHP code through the EmailTemplates because of missing input validation.
This vulnerability has been exploited by threat actors to gain initial access to AWS accounts by injecting custom PHP code through the SugarCRM email templates module. Attackers leveraged misconfigurations to expand their access, obtaining long-term AWS access keys from compromised EC2 instances. They used tools like Pacu and Scout Suite to explore AWS services such as EC2, IAM, RDS, and S3, and gathered account information via AWS Organizations and Cost and Usage services. The attackers moved laterally by creating RDS snapshots and new EC2 instances, modifying security groups, and attempting to escalate privileges by logging in as the Root user. They also employed defense evasion techniques, including deploying resources in non-standard regions and intermittently stopping EC2 instances to avoid detection and minimize costs.
The exploit in question is actively being used to compromise hosts by installing a PHP-based web shell. It involves an authentication bypass against the "/index.php" endpoint of the targeted service. Once bypassed, the attacker obtains a cookie and sends a secondary POST request to "/cache/images/sweet.phar" to upload a small PNG-encoded file containing PHP code. This file acts as a web shell, allowing the execution of commands specified in the base64-encoded query argument "c". For example, a request like 'POST /cache/images/sweet.phar?c="L2Jpbi9pZA=="' would execute the command "/bin/id" with the same permissions as the web service's user.
References
|