Adversaries may exploit remote services to gain unauthorized access to internal systems once inside of a network. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. A common goal for post-compromise exploitation of remote services is for lateral movement to enable access to a remote system.
An adversary may need to determine if the remote system is in a vulnerable state, which may be done through Network Service Discovery or other Discovery methods looking for common, vulnerable software that may be deployed in the network, the lack of certain patches that may indicate vulnerabilities, or security software that may be used to detect or contain remote exploitation. Servers are likely a high value target for lateral movement exploitation, but endpoint systems may also be at risk if they provide an advantage or access to additional resources.
There are several well-known vulnerabilities that exist in common services such as SMB (Citation: CIS Multiple SMB Vulnerabilities) and RDP (Citation: NVD CVE-2017-0176) as well as applications that may be used within internal networks such as MySQL (Citation: NVD CVE-2016-6662) and web server services.(Citation: NVD CVE-2014-7169)
Depending on the permissions level of the vulnerable remote service an adversary may achieve Exploitation for Privilege Escalation as a result of lateral movement exploitation as well.
View in MITRE ATT&CK®Capability ID | Capability Description | Mapping Type | ATT&CK ID | ATT&CK Name | Notes |
---|---|---|---|---|---|
intel-vt | Intel Virtualization Technology | Win 11, HWESP | T1210 | Exploitation of Remote Services |
Comments
HW Enforced stack protection (HWESP) relies on Virtualization Based Security (VBS) which use Intel PTT, Intel VT-x, Intel VT-d and Intel BootGuard to ensure the OS components loaded are not tampered with and isolate security sensitive processes. Additionally, it uses Intel Control Flow Enforcement Technology (Intel CET) to allow hardware to ensure that sensitive areas in the regions of memory (such as the stack) for processes are not tampered with by either injecting code or changing the control flow of the code or both.
HWESP includes four components Code Integrity Guard, Arbitrary Code Guard, Control Flow Guard and Shadow Stack protections.
Code Integrity Guard attempts to prevent "... arbitrary code generation by enforcing signature requirements for loading binaries".
Arbitrary Code Guard attempts to ensure "... signed pages are immutable and dynamic code cannot be generated ...".
Control Flow Guard ensures control flow integrity by enforcing "... integrity on indirect calls (forward-edge CFI)."
Shadow Stack ensures control flow integrity by enforcing "... integrity on return addresses on the stack (backward-edge CFI)."
Together these features aim to ensure integrity of binary images run on Windows 11 and prevent dynamic code from running or changing the control flow of the code. Since these features offer real-time protection for sensitive regions of memory, these are marked as offering significant protection.
References
|
intel-pt | Intel Process Trace | Crowdstrike HEED | T1210 | Exploitation of Remote Services |
Comments
CrowdStrike Falcon Hardware Enhanced Exploit Detection (HEED) is an advanced security feature that integrates Intel Processor Trace (Intel PT) technology to provide a higher level of visibility into complex attack techniques. By utilizing CPU telemetry, HEED enhances the real-time detection and analysis of sophisticated exploitation methods, particularly those involving coded injection attacks. These attacks often target software vulnerabilities in remote services, enabling adversaries to gain unauthorized access to internal systems.
Intel PT offers deep insights into program execution at the hardware level, allowing for the real-time tracking of control flow and memory accesses. This detailed telemetry stream enables security professionals to identify patterns indicative of exploit attempts, such as abnormal execution paths or suspicious API calls.
By combining Intel PT’s granular data with advanced detection algorithms, HEED offers proactive defense against evasive malicious activities that can bypass traditional security mechanisms.
References
|