Adversaries may attempt to mimic features of valid code signatures to increase the chance of deceiving a user, analyst, or tool. Code signing provides a level of authenticity on a binary from the developer and a guarantee that the binary has not been tampered with. Adversaries can copy the metadata and signature information from a signed program, then use it as a template for an unsigned program. Files with invalid code signatures will fail digital signature validation checks, but they may appear more legitimate to users and security tools may improperly handle these files.(Citation: Threatexpress MetaTwin 2017)
Unlike Code Signing, this activity will not result in a valid signature.
View in MITRE ATT&CK®Capability ID | Capability Description | Mapping Type | ATT&CK ID | ATT&CK Name | Notes |
---|---|---|---|---|---|
intel-ptt | Intel Platform Trust Technology | Win 11, Secure Boot | T1036.001 | Invalid Code Signature |
Comments
Windows Secure Boot leverages Intel PTT (TPM) to safeguard settings stored in UEFI, while Intel Boot Guard prevents unauthorized modifications to UEFI firmware. It verifies the signatures of the UEFI firmware, bootloader, and boot drivers before loading the operating system.
When the PC starts, the firmware checks the signature of each piece of boot software, including Unified Extensible Firmware Interface (UEFI) firmware drivers (also known as Option ROMs), Extensible Firmware Interface (EFI) applications, and the operating system. If the signatures are valid, the PC boots, and the firmware gives control to the operating system. Rollback protection also prevents the system from rolling back to older versions of firmware.
Secure Boot employs Intel PTT (TPM) to thwart attacks that attempt to alter the signature policy at the boot level in real-time or modify components involved in the boot process before the boot process. Intel Boot Guard ensures the integrity of the boot-level code before it is executed on the processor, preventing the system from proceeding with malicious boot code.
Secure Boot is able to address threats pre-os that change the signature of the loaded boot component.
References
|
intel-vt | Intel Virtualization Technology | Win 11, VBS, Memory Integrity | T1036.001 | Invalid Code Signature |
Comments
Memory integrity is a Virtualization-based security feature that protects and hardens Windows by running kernel mode code integrity within the isolated virtual environment of VBS (VBS uses Intel VT-x). Memory integrity also restricts kernel memory allocations that could be used to compromise the system. Memory integrity is sometimes referred to as hypervisor-protected code integrity (HVCI). VBS provides an isolated environment that acts as a root-of-trust for the OS and its core components. It is enabled by Intel VT-x, VT-x2 with Extended Page Tables, SMMUs (Intel VT-d) and Secure Boot (Intel Boot Guard).
Memory Integrity protects against behaviors that involve exploitation of kernel components including core drivers in memory, changing security configurations and running untrusted code (based on signatures).
"HVCI protects modification of the Control Flow Guard (CFG) bitmap for kernel mode drivers. Protects the kernel mode code integrity process that ensures that other trusted kernel processes have a valid certificate."
"Hypervisor-protected code integrity introduces a new rule that no kernel memory pages are both writeable and executable, which eliminates an entire category of attacks that dynamically generate code. Additionally, HVCI comes enabled with a code integrity security policy that blocks drivers known to be used in kernel tampering, including Mimikatz, the old vulnerable VBox driver, and the Capcom driver commonly used in rootkits. Ultimately, HVCI provides optimal protection for the kernel against tampering and escalation of privilege attacks. ... With HVCI enabled, attempts to modify the process structures will fail, preventing the protected process flag from being removed, which prevents process memory inspection or module injection into LSA."
References
|