Adversaries may attempt to make payloads difficult to discover and analyze by delivering files to victims as uncompiled code. Text-based source code files may subvert analysis and scrutiny from protections targeting executables/binaries. These payloads will need to be compiled before execution; typically via native utilities such as csc.exe or GCC/MinGW.(Citation: ClearSky MuddyWater Nov 2018)
Source code payloads may also be encrypted, encoded, and/or embedded within other files, such as those delivered as a Phishing. Payloads may also be delivered in formats unrecognizable and inherently benign to the native OS (ex: EXEs on macOS/Linux) before later being (re)compiled into a proper executable binary with a bundled compiler and execution framework.(Citation: TrendMicro WindowsAppMac)
View in MITRE ATT&CK®Capability ID | Capability Description | Mapping Type | ATT&CK ID | ATT&CK Name | Notes |
---|---|---|---|---|---|
intel-ptt | Intel Platform Trust Technology | Win 11, Secure Boot | T1027.004 | Compile After Delivery |
Comments
Windows Secure Boot leverages Intel PTT (TPM) to safeguard settings stored in UEFI, while Intel Boot Guard prevents unauthorized modifications to UEFI firmware. It verifies the signatures of the UEFI firmware, bootloader, and boot drivers before loading the operating system.
When the PC starts, the firmware checks the signature of each piece of boot software, including Unified Extensible Firmware Interface (UEFI) firmware drivers (also known as Option ROMs), Extensible Firmware Interface (EFI) applications, and the operating system. If the signatures are valid, the PC boots, and the firmware gives control to the operating system. Rollback protection also prevents the system from rolling back to older versions of firmware.
Secure Boot employs Intel PTT (TPM) to thwart attacks that attempt to alter the signature policy at the boot level in real-time or modify components involved in the boot process before the boot process. Intel Boot Guard ensures the integrity of the boot-level code before it is executed on the processor, preventing the system from proceeding with malicious boot code.
Secure Boot is able to address threats pre-os that change the signature of the loaded boot component.
References
|
intel-tdt | Intel Threat Detection Technology | Microsoft Defender | T1027.004 | Compile After Delivery |
Comments
Intel Threat Detection Technology's (Intel TDT) Accelerated Memory Scanning (AMS) enables efficient memory scanning by offloading these operations to the integrated Graphics Processor Unit (integrated GPU) on Intel client SoCs.
Microsoft Defender Antivirus leverages AMS to optimize the detection of polymorphic and fileless attacks, improving resource efficiency and reducing the performance impact on the Central Processing Unit (CPU).
References
|
intel-tdt | Intel Threat Detection Technology | Microsoft Defender | T1027.004 | Compile After Delivery |
Comments
Intel Threat Detection Technology's (Intel TDT) Accelerated Memory Scanning (AMS) enables efficient memory scanning by offloading these operations to the integrated Graphics Processor Unit (integrated GPU) on Intel client SoCs.
Microsoft Defender Antivirus leverages AMS to optimize the detection of polymorphic and fileless attacks, improving resource efficiency and reducing the performance impact on the Central Processing Unit (CPU).
References
|